A solution-processed radiative cooling glass
Published in Science, 2023
Abstract: passive daytime radiative cooling materials could reduce the energy needed for building cooling up to 60% by reflecting sunlight and emitting long-wave infrared (LWIR) radiation into the cold Universe (~3 kelvin). However, developing passive cooling structures that are both practical to manufacture and apply while also displaying long-term environmental stability is challenging. We developed a randomized photonic composite consisting of a microporous glass framework that features selective LWIR emission along with relatively high solar reflectance and aluminum oxide particles that strongly scatter sunlight and prevent densification of the porous structure during manufacturing. This microporous glass coating enables a temperature drop of ~3.5° and 4°C even under high-humidity conditions (up to 80%) during midday and nighttime, respectively. This radiative “cooling glass” coating maintains high solar reflectance even when exposed to harsh conditions, including water, ultraviolet radiation, soiling, and high temperatures.
Recommended citation: Xinpeng Zhao, Tangyuan Li, Hua Xie, He Liu, Lingzhe Wang, Yurui Qu, Stephanie C. Li, Shufeng Liu, Alexandra H. Brozena, Zongfu Yu, Jelena Srebric and Liangbing Hu "A solution-processed radiative cooling glass." Science 382.6671 (2023): 684-691. https://www.science.org/doi/abs/10.1126/science.adi2224